Lumbo Pelvic Hip Complex Dysfunction (LPHCD)

Lumbo Pelvic Hip Complex Dysfunction (LPHCD):

Predictive Model of Lumbo Pelvic Hip Complex Dysfunction

By Brent Brookbush MS, PES, CES, CSCS, ACSM H/FS

In this article we will discuss a predictive model of Lumbo Pelvic Hip Complex Dysfunction (LPHCD) as it relates to movement impairment, injury prevention, movement preparation, performance enhancement and rehabilitation. Specifically, this article will relate these concepts to the selection of exercise and corrective techniques.

For an introduction to Postural Dysfunction and Movement Impairment please refer to this article:
Introduction to Postural Dysfunction and Movement Impairment

What’s in a name?:

“Lumbo Pelvic Hip Complex Dysfunction” (LPHCD) is a purposely chosen title for the impairment discussed in this article.  Although I would prefer to use the term “Core Dysfunction,” the term core has been defined in a variety of ways by various, well-respected practitioners.  Although the core is commonly defined, as “the hip, SI joint, pelvis, lumbar spine, and all the structures that cross those joints,” the term core is also used to describe the muscles of the trunk alone and/or the muscles of the abdomen.  To mitigate any potential confusion this body segment will be referred to by its constituent parts, as above.

By using a title that refers to a body segment, rather than the specific muscle activity or joint position, the title itself will not imply a certain set of joint actions, muscle activity, or length/tension relationships.  I do not wish for the title itself to bias/limit the future evolution of this model, nor bias the debate and discussion of this model as more research becomes available.  Common compensation patterns leading to LPHCD have been previously described as an “anterior pelvic tilt,” “lower cross syndrome,” and “excessive lordosis”2-4.  However, these terms may limit the model to a particular set of joints, one variation of the dysfunction, and/or may be misleading.  For example, “lower cross syndrome” implies a set of underactive and overactive muscles, but does not consider all of the structures involved in this movement impairment.

The corrective exercise strategies discussed later in this article are used by the Brookbush Institute (http://www.brookbushinstitute.com/) and have their foundation in the corrective exercise model (CEx) developed by the  National Academy of Sports Medicine (NASM), and described in the text “NASM Essentials of Corrective Exercise Training” by Dr. Mike Clark & Scott Lucette (7).

Why do we need a better model?    

            The Search for Congruence – my revision of this model is nothing more than a search for congruence – an explanation that can find congruence between theory, research, observation, practice, and outcomes.  That is, a better model would be evidence-based, accurately describe what we see during assessment, predict exercise and techniques that will enhance performance, and contribute to our understanding of the etiology of common lower-body pathologies.  For more on my views of evidence and the development of this model click here – Search for Congruence

Note: The movement impairment model discussed and developed in this article may not describe the compensation pattern adopted immediately post acute orthopedic injury (ex. impact injuries) or accurately describe neurologic dysfunction (ex. stroke); however, they may be useful in describing some of the compensation patterns adopted weeks, months and years post injury.

Somewhat ironically, the common conditions that may be explained by LPHCD, may also help to refine our model of movement impairment.  We could view some of these syndromes as the “extremes of LPHCD,” or the outcome of a lifetime with LLD.  It’s as if the conditions are the “answer” to an “equation” we are trying to solve for.  This is analogous to how the brain may be studied by examining the effects of brain injury on cognition, sensation, and motion.

 

Signs of Lumbo Pelvic Hip Complex Dysfunction:

Overhead Squat Assessment:

    • Knees Bow in
    • Knees Bow Out
    • Excessive Forward Lean
    • Low Back Arches
    • Abdominal Distension
    • Asymmetrical Weight Shift
    • Arms Fall Forward

Goniometric Assessment

    • Hip Internal Rotation: < 45°
    • Hip External Rotation  < 45°
    • Hip Abduction < 35°
    • Hip Extension < 15º
    • Knee Extension (90/90) >v20°

Flexibility Assessments

 

Joint Dysfunction

  • Anterior translation of femoral head in acetabulum
  • Superior translation of femoral head in acetabulum
  • Anterior rotation of innominate on sacroiliac joint
  • Rotation of sacrum (for more info see Sacroiliac Joint Motion and Predictive Model of Dysfunction)
  • Posterior translation of proximal tibiofibular joint
  • Posterior translation of the tibia on the femur (inability to glide anteriorly, may be limited to the lateral compartment).

 

SI Joint Dysfunction

    • Extension
    • Flexion
    • Rotation
    • Elevation

 

Common Symptoms of LPHCD:

  • Low Back Pain
  • Disk Injury
  • Stiffness of Lumbar Facets
  • Sacroiliac Joint Dysfunction
  • Hip Impingement Syndrome
  • Labral Tears
  • Sciatica
  • Groin Pull (Adductor Strain)
  • Iliopsoas Tendonitis
  • Lesser Trochanteric Bursitis
  • Hamstring Strains
  • Abdominal Strains (Hernia?)
  • Lateral knee pain (Runners Knee)
  • Patellar Tendonitis (Jumpers Knee)
  • Osteoarthritis
      • Knee
      • Hip
      • Lumbosacral
      • Degenerative Joint Disease (DJD)
      • Degenerative Disk Disease (DDD)

 

Lumbo Pelvic Hip Complex Dysfunction and Performance: 

Postural dysfunction effects length/tension relationships, resting tone, afferentation, alters proprioception, joint dyskinesis, and maladaptive changes in connective tissue length (2,7,8).  These neuromuscular and articular changes have an impact on force output, coordination, and endurance, leading to a decrease in performance.  A model of LPHCD that implies a set of corrective exercises will be instrumental in refining movement prep/corrective exercise warm-ups for use in performance enhancement programs.  In my opinion, the corrective warm-up renders the “general warm-up” obsolete.  You have 2 choices before you start training – “improve the quality of human movement and optimize mechanics, or spend 10 minutes on a treadmill reinforcing your compensation patterns.”

 

Note the excessive lordosis and increased angle between the the spine and pelvis.

Note the excessive lordosis and increased angle between the the spine and pelvis.

 

Traditional Model of Lumbo Pelvic Hip Complex Dysfunction

  • Unlike the traditional models of Lower Leg Dysfunction and Upper Body Dysfunction, the traditional model of Lumbo Pelvic Hip Complex Dysfunction (a.k.a. lower cross syndrome, or an anterior pelvic tilt) is congruent with the alterations in muscle length and activity presented in this model. (If the sacroiliac joint is considered separately, this is presented in a separate article)

As the pelvis is not a joint, but a bone controlled by the lumbosacral joints and hip joints – the graph below divides pelvic motion into lumbar and hip joint motion.

    • Anterior Pelvic Tilt = Lumbar Extension + Hip Flexion
Observed Joint Action Short/Overactive Muscle Opposing Joint Action Long/Underactive Muscles
Lumbar Extension Latissimus DorsiErector Spinae Lumbar Flexion Rectus AbdominisExternal ObliquesInternal ObliquesIntrinsic Stabilization Subsystem
Hip Flexion PsoasIliacusTensor Fascia Latae (TFL)Rectus FemorisAnterior Adductor Complex Hip Extension Gluteus MaximusBiceps FemorisSemitendinosus and SemimembranosusAdductor Magnus

If we stay true to the graph above, we would release and lengthen the short/overactive structures, and activate and integrate the long/under-active muscles.

The first issue with this model is the exclusion of several muscles that cross the hip and lumbar spine.

Rule #2 of Human Movement Science:

“Every structure that crosses a joint influences motion”

  • Corollary to Rule #2:  Every structure that crosses a joint is affected by- or contributes to- postural dysfunction.” 

Where does the piriformis, deep rotators of the hip, gluteus medius, gluteus minimus, and quadratus lumborum fit into our model?

Practice Contributes to Theory (Positive Trendelenburg Sign):

LPHCD often results in an inability to maintain neutral frontal plane alignment of the pelvis during single leg stance – this is known as a “Positive Trendelenburg Sign.”  It indicates that the gluteus medius is weak, deconditioned, and/or inhibited.  Note, you may not see this sign in relatively healthy individuals until they perform an activity that approximates the intensity of their most demanding daily activity – example: you may need to do a “frontal plane hop to single leg balance” with a basketball player to note a positive finding.  The frequency with which gluteus medius inhibition is noted in individuals with LPHCD suggests there is a frontal or transverse plane component to this compensatory pattern.

We have actually solved for the dyskinesis at the hip joint in the (Lower Leg Dysfunction) model.  By “borrowing” the “math” that solved for the hip contribution to lower leg dysfunction we can solve for the remaining muscles in the LPHCD model.  (We will assume that common dysfunction at each joint is generally the same regardless of which dysfunctional segment initiated the compensatory pattern.)  Recent research has implied that hip dysfunction will often result in an inability to eccentrically decelerate femoral internal rotation3.  If we consider “Hip Internal Rotation” as a compensatory joint motion (over-activity of internal rotators) and add it to the short/overactive side of the graph, and add “Hip External Rotation” (under-activity of external rotators) to the long/under-active side of the graph – all hip musculature is accounted for.  Further, we find a solution that is congruent with our findings in practice: gluteus medius = long/under-active.

The only muscle left is the quadratus lumborum (QL).  Practice would suggest that this muscle is over-active, but bilateral activation of the QL would only contribute to stabilization and/or compression of the lumbar vertebrae (depression of the 12th rib), not compensatory motion.  This may be a contributing factor to lumbar disk injury/low back pain; however, you may find a more satisfying answer when reading the article – Sacroiliac Joint Motion and Predictive Model of Dysfunction.

Short/Over-active

 

Long/Underactive

4 Muscles That Keeps Us Guessing

The sartorius seems to play both sides.  Although it is a hip flexor and should act as a short/overactive structure, it is also an external rotator making it long/under-active.  Further, it is a tibial internal rotator/abductor (contributes to varum force) of the knee acting as a long/under-active  muscle in lower leg dysfunction, unless the knees bow out, in which case the sartorius may contribute to femoral external rotation and abduction.  The muscle does have a propensity toward trigger point development in both LLD and LPHCD, but my gut (for whatever that’s worth) says long and under-active due to its role in knee internal rotation.  Long story, short, I have not found an effective, self-administered exercise for the activation of this muscle without increasing the activity of several over-active structures.  However, trigger point release of the superior portion of this muscle, using a foam roll, does seem to be effective for improving hip mechanics and relieving anterior thigh discomfort.

The biceps femorisadductor magnus and piriformis are listed on the long/underactive side of our graph but behaves as over-active structures.  They are often trigger point laden, the biceps femoris may be the limiting structure of knee extension ROM both passive and active, the adductor magnus and piriformis may limit hip internal rotation, and all may be felt in hip extension activities despite the gluteus maximus being the prime mover.  A common occurrence in those who use loaded squats during their exercise routine is soreness in the back of the leg, inner thigh or horizontally accross the top of the gluteal region with little or no soreness felt in the broader gluteus maximus.

This is likely due to a phenomenon referred to as “synergistic dominance.”  Due to the inhibition of the glute complex (gluteus maximus and gluteus medius) as a result of altered reciprocal inhibition via the short/overactive iliacus – your biceps femorisadductor magnus and piriformis must act as the prime mover and stabilizers of the hip during extension.  This leads to the biceps femoris, adductor magnus and piriformis becoming over-active and adopting the rather peculiar combination of attributes of  “long and overactive” in LPHCD.

Due to the propensity toward over-activity and adaptive lengthening (in most cases), the long head of the biceps femoris, adductor magnus and piriformis are generally released and not stretched.   If stretching techniques are utilized, active and dynamic stretching is preferred, as static stretching has the largest likelihood of increasing muscle length and may exacerbate this postural dysfunction.

 

Feeling artistic during “Advancements in Exercise Selection: Lumbo Pelvic Hip Complex Dysfunction” – http://www.brookbushinstitute.com/workshops/

 

Subsystem Involvement:

In the most common presentation of LPHC dysfunction the Anterior Oblique Subsystem (AOS) is under-active.  The AOS is not capable of tilting the pelvis posteriorly or maintaining enough lumbar flexion to attain a neutral spine.  This is likely due to synergistically dominant lumbar extensors reciprocally inhibiting spinal flexors.  Cuing a posterior pelvic tilt to reinforce optimal pelvic alignment and Integrating the AOS (legs w/ push exercise) is an effective means of improving this dysfunction.

Note: The use of an AOS integration exercise with an individual who has an APT will usually correct lumbo-pelvic hip alignment, but in some cases results in an excessive forward lean.  In this case it is appropriate to follow an AOS integration exercise with a Posterior Oblique Subsystem (POS) integration exercise.

In LPHCD the AOS under-activity is paired with  Posterior Oblique Subsystem (POS) under-activity.  The glute complex is grossly inhibited by over-active of the hip flexors, resulting in synergistic dominance of the biceps femoris and lumbar extensors, i.e. the Deep Longitudinal Subsystem (DLS).  POS integration exercise should be done post release, stretch, mobilization, activation of the DLS and integration of the AOS.

A summary of the Subsystem involvement in Lumbo Pelvic Hip Comples Dysfunction:

Activate Subsystem Integration Limit/Inhibit
LPHC Dysfunction ISS AOS  –> POS DLS


Refined list including our analysis of the Sartorius, Overactive Synergists & Subsystems:


Overactive (Release and Stretch):

Underactive (Activate and Integrate):

 

Before we go any further:

The model for LPHCD created above (that includes Hip Internal Rotation and Hip External Rotation) provides a high quality list of overactive and under-active structures.  Utilizing release and lengthening techniques on the short/overactive structures, and activation and integration techniques on the long under-active structures will result in effective corrective exercise strategies.  If you are new to corrective exercise, postural assessment, kinesiology; specifically SI joint arthrokinematics, it may be wise to start with the list of muscles above before progressing to the more complicated article detailing SI Joint motion.

 

Arthokinematic Dyskinesis (Joint Dysfunction)

Vertebral Facets and Disks:

  • Over-activity of the erector spinae and the increased lordosis disrupt normal arthrokinematics of the lumbar spine, resulting in inferior glide of the superior facets on the inferior vertebrae – often referred to as “closing” of the facets.  This increases compressive forces on the joint surfaces, and compressive force on the posterior portion of the intervertebral disks, forcing the nucleus populous anteriorly.  Further the increased lordosis increases anterior shear forces on the lumbar spine placing considerable strain on the passive and active structures that mitigate these forces.  The resulting change in vertebral position and force vectors results in multifidus, intertransversarii, interspinalis and rotatores length and activity and decreases the capacity to produce force (altered length/tension relationships and force couple relationships).  Long term compensation may result in adaptive lengthening of supporting ligaments, hypermobility, and lumbar instability.

The Hip:

  • Anterior and superior migration of the femoral head in the acetabulum is the common dysfunctional pattern seen at the hip, and is likely best explained by this model of LPHCD.  Below is an analysis of the force vectors created by muscles crossing the hip (posterior left, anterior right).  Although all muscles will contribute to a superior glide (not to mention gravity), if you imagine the vectors of the hip flexors (anterior vectors) increasing due to over-activity, and the vectors of the hip extensors decreasing due to under-activity (posterior vectors) you can imagine how the sum of these forces would pull the femoral head anteriorly.  In essence this propensity toward anterior and superior migration may be explained quite eloquently by the adaptive shortening and over-activity noted in the hip flexor musculature in those who present with this dysfunction.

 

Force vectors of muscles crossing the hip – Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation – 2nd Edition, Donald A. Nuemann – http://thebodymechanic.ca/wp-content/uploads/2012/04/hip-flexion-anatomy-with-neumann-lines-of-pull.jpg

 

The Sacrum:

  • The broad attachment of the erector spinae via the deep layer of the thoracolumbar fascia (common erector tendon) attaches to both the sacrum and posterior ilium.  Although the erector spinae has a line of pull that would lead to flexion (nutation) of the sacrum, this cannot occur without an anterior rotation of the pelvis as well.  Because the erector spinae cause both the sacrum and the ilium to rotate in the same direction, bilateral activation would result in little if any motion at the SI joint.  Joint motion at the SI joint can only occur it the erector spinae contract unilaterally.  That is, the erector spinae would nutate the sacrum and anteriorly tilt the pelvis ipsilaterally, causing a relative posterior rotation of the contralateral ilium and SI joint motion on the contralateral side (flexion/nutation).  These forces may also result in a relative superior and anterior glide, and rotation of the sacrum around a central axis compressing joint surfaces on the contralateral side.  Actual arthrokinematics are not easily studied and have been the topic of much debate and discussion.  More refined research methods are desperately needed.  Although the sacrum is undoubtadly affected by lumbo pelvic hip dysfunction the resulting compensation pattern is generally asymmetrical and is more easily viewed as a “compensation within a compensation”.  The common compensation pattern seen at the sacrum is discussed further in this article – Sacroiliac Joint Motion and Predictive Model of Dysfunction.

 

 

Fascial Connections:

The fascial system needs more consideration in our corrective exercise strategies.  The work of Tom Myers has brought this system to the forefront of human movement4, however, self-administered techniques for addressing fascial restriction are still fairly crude.  There are many brilliant practitioners developing exercise strategies specific to fascia, and we can expect to see rapid development in this area in the years to come.  This model does reinforce some of Tom Myers work, and illustrate some important fascial connections.

  • TFL/VL/ITB Complex (Tensor fascia latae, vastus lateralis, iliotibial band) –  The tensor fascia latae (TFL) uses the iliotibial band (ITB) as a tendon. The ITB is invested by fascial slips from the vastus lateralis (VL). In essence, these fascial slips implicate the vastus lateralis in this lateral thigh synergy that may contribute to an increased moment arm for hip flexion.  In postural dysfunction, pattern overload of the ITB may lead to vastus lateralis trigger points, and the superficial fascia of the vastus lateralis becoming bound to an iliotibial band that has been pulled tight and shifted anteriorly by a TFL that is short and overactive.  Because of these factors it may be necessary to add self-administered static release techniques for the vastus lateralis, and myofascial shear techniques for the ITB to a routine aimed at returning optimal TFL neuromuscular efficiency and improving LPHCD.  Another potential relationship may exist between the TFL’s nasty cousin – the gluteus minimus – and the vastus lateralis, whose attachments border one another.
  • The sacrotuberous ligament – may infer a relationship between the piriformisadductor magnus and biceps femoris.  I find this to be an interesting coincidence, as these are the same muscles that are likely to become long/overactive in LPHCD.  The sacrotuberous ligament may act to transmit force and proprioceptive information, stimulating a reflexive increase in tone and integrated function when any one of these muscles is stimulated.  As mentioned above this may explain the over-activity seen in all of these muscles when inhibition of the gluteus maximus results in excessive external rotation during extension (“Knees Bow Out) during functional movement patterns or sacral counternutation due to reduced sacral compression via gluteus medius contraction and sacroiliac instability.
  • The Thoracolumbar Fascia: This fascial structure may be one of the most complex structures in the human movement system.  Studies have verified a rich presence of pacini corpuscles(quick adapting receptors that respond to pressure and vibration), paciniform corpuscles (like pacini corpuscles but smaller), golgi tendon organ (slower adapting receptors that respond to muscular contraction), and interstitial receptors (free nerve ending they may respond to tension, pressure, or noxious stimulation).  Check out this article on receptors and fascia, great read – “Innervation Excerpt”.  Increased lumbar extension and anterior pelvic tilt will alter length and tension in this structure resulting in altered receptor activity.  Often this position includes an increase in activity of the erector spinaelatissimus dorsiquadratus lumborum, and iliopsoas.  Mechanically, the presence of an increased lordosis in the lumbar spine increases compression and extension forces and due to the lordotic curve in the lumbar spine an anterior translatory force (anterior shear force).  Despite the erector spinaelatissimus dorsiquadratus lumborum, and iliopsoas having important roles as movers and stabilizers of the core, these muscles will also contribute to an increase in these forces.  To mitigate these forces the Intrinsic Stabilzation Subsystem (ISS) increases pressure in the peritoneum (similar to squeezing a balloon) creating a posterior force against the anterior surface of the lumbar spine.  In addition to this increased intra-abdominal pressure, the transverse abdominis (TVA) contributes to rigidity of the thoracolumbar fascia providing lateral stability to the lumbar spine, and increases the compressive forces between sacrum and ilium resulting in greater stability of the sacroiliac joint (10).  Although, this subsystem is intimately invested in the thoracolumbar fascia, alterations to length and tension seem to be inhibitory of these muscles.  If the ISS is not functioning optimally to mitigate the anterior shear force, than the forces created during movement may result in anterior subluxation, excessive force to passive structures, pain, dysfunction, and injury (sprains, strains, bulging disks, herniated disks, capsular damage, nerve impingement, arthritic changes, etc.).  Further, intersegmental muscles of the spine (rotatores, interspinales and intertransversarii) relay proprioceptive information back to the CNS and maintain micro-alignment of the lumbar vertebrae with the aid of co-contraction of the multifidus.  These muscles also contribute to increased lumbar stiffness which may also play a role in receptor activity of the thoracolumbar fascia.  Last, the gluteus maximus and medius increases the tension of the thoracolumbar fascia during functional tasks, and both are long and under-active in this dysfunction.

 

Resistance Training and Relative Flexibility Progressions: 

Relative flexibility progressions are general guidelines for exercise selection while correcting postural dysfunction. In the case of Lumbo Pelvic Hip Complex Dysfunction (LPHCD), we need to consider modifying any activity that would require optimal extensibility of the lumbar extensors and/or hip flexors.  Luckily that only modifies a few movement patterns while we work to correct this impairment.
No Overhead Movements: The latissimus dorsi, as an extensor of the lumbar spine often contributes to an anterior pelvic tilt.  Unfortunately, the latissimus dorsi  also restricts shoulder flexion and abduction.  You can see evidence of this restriction in individuals who have to arch their back when performing a shoulder press or reaching back as in the wind-up of a baseball pitch or volley ball serve.  In essence, the individual has to shorten the latissimus dorsi at the lumbar spine to allow full ROM at the shoulder.  To ensure that this pattern is not reinforced during resistance training and conditioning we choose exercises that do not require full flexion or abduction at the shoulder.  You will note that their is no restriction to Chest/Pushing movements, only minor restrictions to Back/Pulling movements, and that we follow the same progression of exercise as used in upper body dysfunction for shoulder movements.  Keep in mind, these restrictions are temporary.  As optimal mobility is attained the restrictions on exercise diminish.

Chest/Pushing Restrictions:

  1. No Restrictions

Back/Pulling Restrictions:

  1. No Sagittal Plane Above Shoulder
  2. No Frontal Plane Above Shoulder

Shoulder/Pressing Relative Flexibility Progression:

  1. Scaption
  2. PNF Carry Away
  3. Sagittal Plane Overhead Press
  4. Frontal Plane Overhead Press

No Lunges, and maybe… no deadlifts:  Most of our leg strength progressions are not impacted by a reduction in hip flexor extensibility, however, the rear leg of a lunge requires near optimal extensibility during the eccentric phase to maintain ideal form through-out a full range of motion (It’s basically a kneeling hip flexor stretch under load… right?) To avoid reinforcing an anterior pelvic tilt and altered core muscle recruitment it is likely prudent to avoid lunges until extensibility improves.  Further, it may be advisable to avoid deadlifts.  Lumbo Pelvic Hip Complex Dysfunction (LPHCD) is altered recruitment strategies of the lumbar stabilizers by definition.  Of all the strength exercises within our repertoire, deadlifts place the greatest load on the lumbar spine, due to the long moment arm created between hips and shoulders.  Although this movement pattern is both safe and functional with optimal core stabilization, with altered recruitment strategies the risk of injury may increase.

Leg Strength Relative Flexibility Progression:

  1. Leg Press
  2. Ball Wall Squats
  3. Squats
  4. Step-Ups
  5. No Lunges 
  6. Single Leg Squat Touch Down

A possible alternative:

 

 

 

A Common Variation seen in Individuals with LPHCD– “Knees Bow Out:”

Although most variations in postural dysfunction are relatively rare (let’s say less than 15%), and most involve the same musculature; both Lumbo Pelvic Hip Complex Dysfunction and Lower Leg Dysfunction present with the fairly common variation of “Knees Bowing Out” during eccentric control of hip flexion – squatting, siting, descending from stairs, etc.

However, we have already solved for this variation.  The synergistic dominance seen in the piriformis, biceps femoris, and adductor magnus (possibly via communicating synergy at the sacrotuberous ligament) results in excessive external rotation as way to compensate for an inability to eccentrically decelerate femoral adduction and internal rotation in the presence of prime mover inhibition.  This results in one small but meaningful change in our programming.  Rather then these muscles being “long/over-active” they are now “short/over-active” implying they should be released and stretched.  

A Variation on Variation – Or is It?

Occasionally it is noted that an individual,s “Knees Bows Out,” or “Turns-Out” during end range hip extension. Generally this dysfunction is noted as excessive abduction of the knee during during the eccentric phase of exercises or movement patterns similar to static lunge in which the knee “flares out” during decent.” This is likely due to a synergy at the ASIS between the TFL, Sartorius and Rectus Femoris.  However, this is not the variation described above as as these individuals usually present with “Knees Bow In” during an overhead squat assessment.  Further, you may note that these muscles are already labeled as short and over-active in our refined model of LPHCD and would be treated the same – release and stretch.

Variations Between Individuals – Time Course of Dysfunction Hypothesis:

I hypothesize that much of the variations between individuals with LPHCD can be explained by a time-course of dysfunction.  That is, LPHCD is a progressive syndrome that slowly modifies structures over time.  This may be due to the rate of adaptability in various tissues, mechanical restriction having a larger impact on movement than soft tissue, muscle fiber type and resistance to fatigue, or motor patterns that are “hard-wired” alternatives to optimal human movement.

At this point, I seem to note the following trend (generally, it would appear that dysfunction moves proximal to distal).

  1. Adaptive Shortening of Hip Flexors
  2. Intrinsic Stabilization Subsystem Inhibition
  3. Synergistic Dominance of Lumbar Erectors
  4. Glute Complex Inhibition
  5. Synergistic Dominance of Biceps Femoris
  6. SI joint Dyskinesis
  7. Etc.

Note: This dysfunction may progress in either direction

For a complete repertoire of Corrective Exercise and a Sample Corrective Strategy check out this article – Lumbo Pelvic Hip Complex Corrective Exercise and Sample Routine

For a case study and sample resistance training program – Lumbo Pelvic Hip Complex Dysfunction and Weight Loss

And if you really want to twist your mind and take your understanding and programming to a whole new level check out the dysfunction within this dysfunction – Sacroiliac Joint Motion and Predictive Model of Dysfunction

Bibliography:

    1. Phillip Page, Clare Frank, Robert Lardner, Assessment and Treatment of Muscle Imbalance: The Janda Approach © 2010 Benchmark Physical Therapy, Inc., Clare C. Frank, and Robert Lardner
    2. Dr. Mike Clark & Scott Lucette, “NASM Essentials of Corrective Exercise Training” © 2011 Lippincott Williams & Wilkins
    3. Donald A. Neumann, “Kinesiology of the Musculoskeletal System: Foundations of Rehabilitation – 2nd Edition” © 2012 Mosby, Inc.
    4. Michael A. Clark, Scott C. Lucett, NASM Essentials of Personal Training: 4th Edition, © 2011 Lippincott Williams and Wilkins
    5. Leon Chaitow, Muscle Energy Techniques: Third Edition, © Pearson Professional Limited 2007
    6. Tom Myers, Anatomy Trains. © Elsevier Limited 2001
    7. Shirley A Sahrmann, Diagnoses and Treatment of Movement Impairment Syndromes, © 2002 Mosby Inc.
    8. David G. Simons, Janet Travell, Lois S. Simons, Travell & Simmons’ Myofascial Pain and Dysfunction, The Trigger Point Manual, Volume 1. Upper Half of Body: Second Edition,© 1999 Williams and Wilkens
    9. Cynthia C. Norkin, D. Joyce White, Measurement of Joint Motion: A Guide to Goniometry – Third Edition. © 2003 by F.A. Davis Company
    10. Carolyn Richardson, Paul Hodges, Julie Hides.  Therapeutic Exercise for Lumbo Pelvic Stabilization – A Motor Control Approach for the Treatment and Prevention of Low Back Pain: 2nd Edition (c) Elsevier Limited, 2004

(C) 2014 Brent Brookbush

Comments, questions, and critiques are welcome and encouraged.

 

 


Comments

Lumbo Pelvic Hip Complex Dysfunction (LPHCD) — 58 Comments

  1. Pingback: Lumbo Pelvic Hip Complex Corrective Exercise and Sample Routine |

  2. Pingback: Sacroiliac Joint Dysfunction Corrective Exercise and Sample Routine |

  3. Pingback: Pelvic rotation | Gilardin

  4. Pingback: Piriformis |

  5. Dear Mr. Brent Brookbush.

    Hello sir, and thank you for your time.

    I just wanted to make sure that you still use the Brent@b2cfitness.com email? I did send you an email; however, i see you have quite a few websites and I don’t know which one to use.

    • Also sir, As I went through your collection of youtube videos, I did have one possible suggestion that may make it a bit easier for users. Your videos are already great, but I think it may help if they were a further organized on youtube.
      It seems at least 2 of your programs for upper and lower dysfunction follow the
      1. Inhibition of Overractive tissues
      2. Isolation of underractive tissues
      3. Reactive Integration

      I sure hope I dont sound haughty, but I was trying to be helpful. Organizing your videos further into entire section headlines, like putting ALL 4-5 of the LPH featured playlists into one headline. I see you have grouped all types of videos together. FOr instance, all your Lumbar-Pelvic Hip dysfunction videos are together, however, it was hard as a user to identify the entire LPH program. It may make it easier for people to follow if you had one general headline or playlist for all the LPH – so that people without the basic kinesiology knowledge can easier identify and follow your overall program. I realized it could be hard for a person without a good background to go through the featured playlists, and select which exercises apply to which condition.

      -Lumbar- Pelvic Hip Dysfunction.
      —Intro Video into LPH complex
      A. LPH static releasse techniques playlist
      1. First video in this category as you have then grouped together already
      2. Second video
      3. etc
      B. Static Stretching Techniques for LPH, if upper body, static for Upper. Etc
      1. First video
      2. Second video
      C. Isolation Exercises for LPH
      1.
      2.
      D. Reactive Integration for LPH.

      • Hey Jason,
        Organization is a constant challenge when you start dealing with a large volume of information. Believe it or not, I have already solved the issue you are speaking of:
        Youtube Video Playlists are organized by Modality, where as the blog – under the heading “Postural Dysfunction & Movement Impairment” – http://brentbrookbush.com/category/postrualdysfunctionandmovementimpairment/ – organizes by impairment and gives sample routines that link back to the videos.
        All modalities progress from one to another… as you move through a program I think you will find it easier to go from the “Static Release” videos to the “Active Release” series and find the appropriate muscle that you are trying to progress. Otherwise we would have 3 or 4 very large playlists.
        Sincerely,
        B2

    • That’s the correct e-mail, and the only site I have is “www.b2cfitness.com” – there are several different pages with various modes of education, but you can always find all of them by starting with the homepage.
      Hope that helps,
      B2

      • Hi Brent,
        Thank you for a great resource. I was reviewing some of the information with my partner (a spine surgeon and pain specialist) and he had a few questions regarding the way you asses anterior pelvic rotation. He pulled many references to review this and am happy to share the list. Your comments back??

        Anterior pelvic tilt and low back pain.

        The are no PubMed referenced studies regarding the reliability of the “Pants” method of determining anterior pelvic tilt is reproducible.

        Normative values for pelvic tilt have not been published.

        There is significant variation in pelvic symmetry in patients without symptoms.

        It is unlikely the “Pants” method would be reproducible on geometric grounds, given that the distance between the ASIS and PSIS is not measured.

        Calculating anterior pelvic tilt by measuring distance from ASIS and PSIS to floor and from ASIS to PSIS is reliable, but there is variability due to thickness of soft tissues overlying ASIS and PSIS.

        There is only a moderate correlation between pelvic tilt measured clinically and radiologically. Both measures are reliable.

        There is only weak evidence that pelvic tilt is associated with low back pain. If anything, low back pain is associated with posterior pelvic rotation.

        The clinical relevance of small differences in pelvic tilt has not been determined.

        Any statistically significant differences are small and largely within the range of measurement error.

        There is considerable overlap of values in populations with and without low back pain.

        There are only isolated case reports that suggest correcting anterior pelvic rotation improves low back pain.

        There is evidence that pain is associated with protective changes in posture.

        There are no PubMed referenced trials of correcting pelvic rotation in the management of low back pain.

        Absence of evidence of effect is not evidence of absence of effect, but why has this not been studied?

        • I would love a list of references and we would be happy to add them to our list of upcoming research reviews, so that more students had access to research and learned how to apply finding to practice.
          Try not to think of the “pants” method as a new prognostic indicator of an anterior pelvic tilt, but as a teaching cue to help new students do static and dynamic postural assessments. I do not use the pants method myself, but I find it to be a very powerful tool in helping students to start visualizing pelvic alignment. Remember, that this is an educational site and I am trying to create a resource for students both experienced… and brand new to the world of human movement science. In time, “the pants method” should be replaced by more reliable methods.
          Thank you so much for the time and effort you put into this post, and for reviewing it with a surgeon… I love and am a huge proponent of the integration of practices.
          Sincerely,
          B2
          If you would like to e-mail me with the list or share my information with your friend I can be reached by e-mail at Brent@BrookbushInstitute.com

  6. Pingback: Psoas |

  7. Pingback: Gluteus Medius |

  8. Pingback: Lower Leg Dysfunction (LLD) |

  9. Pingback: Latissimus Dorsi |

  10. Pingback: Lumbo Pelvic Hip Complex Corrective Exercise and Sample Routine «

  11. Pingback: Tensor Fasciae Latae (TFL) «

  12. Pingback: Erector Spinae |

  13. Pingback: Sacroiliac Joint Motion and Predictive Model of Dysfunction |

  14. Pingback: Posterior Oblique Subsystem (POS) |

  15. Pingback: Deep Longitudinal Subsystem (DLS) |

  16. Pingback: Adductors |

  17. Pingback: Rectus Abdominis |

  18. Pingback: External Obliques |

  19. This is a great article. Everything makes sense. Im having a better understanding of this due to your videos, workshops, & articles. Thank you.

    Sincerely,
    Bernadette

  20. Pingback: Anterior Oblique Subsystem (AOS) | BrentBrookbush.com

  21. Pingback: Quadratus Lumborum | BrentBrookbush.com

  22. Pingback: Transverse Abdominis |

  23. Brent,

    Love all the info on the website, keep it coming. It has been great resource for me. I would like to start some dialogue on the hip internal/external rotation. It is my understand that the gluteus medius is the primary internal rotator. So while its synergists in that respect, TFL/adductors/gluteus minimus, can be tight, what about the theory that the gluteus medius is commonly weak when internally rotating? This theory would also require the ‘deep six lateral rotator group’ to have some tightness.

    Any feedback would be awesome.

    Thank,

    Matt

    • Hey Matt,
      The Gluteus Minimus , not the Gluteus Medius is the primary internal rotator. The gluteus medius may be divided into anterior and posterior halves, with the anterior half contributing to internal rotation and the posterior half contributing to external rotation. It is generally believed that the fibers that externally rotate the hip become weak. As I mentioned in the graphs in this article, the TFL, gluteus minimus and adductors are short, while the gluteus medius, gluteus maximus and the deep rotators of the hip are long. It could be that the deep rotators of the hip are long and over-active much like the biceps femoris. In the case we would release these rotators, but not stretch them.
      Hope that clarifies some of the kines questions… thanks again for your inquiry,
      B2

  24. Hey Brent,

    Yes it does. At the unfortunate expense of your valuable time, I have a follow up question if you don’t mind. So in theory, the common man with anterior pelvic tilt etc. is likely to have interiorly rotated femurs because of the adductors/tfl/glut min. Where my experience differs is: if one feels and holds contact with the head of the femur and subsequently has the client perform internal/external hip rotations,it seems to me that 99% of the time the head of the femur can easily externally rotate while internal rotation is severely limited. Therefore I interpret this as limited internal rotation with excessive external rotation. What variables am I not considering or is my fundamental understanding of the concept skewed?

    Thanks again for the feedback Brent.

    Matt H.

  25. Pingback: Posterior Hip and Thigh Flexibility |

  26. Pingback: Overactive Synergists Cheat Sheet |

  27. Pingback: Tibial Internal Rotator Activation | BRENT BROOKBUSH - articles

  28. Pingback: Intrinsic Stabilization Subsystem (ISS) | Brent Brookbush

  29. Pingback: Solutions Table: Overhead Squat Assessment | Brent Brookbush

  30. Pingback: Gluteus Medius | Brent Brookbush

  31. Read your article again. I like read and re-read your articles. It seems that every time I read it, I get a better grasp on it. Meaning having a better undertanding without thinking. It’s still challenging, but you are an excellent writer and teacher!
    Bernadette

  32. Pingback: Rectus Femoris | Brent Brookbush

  33. Pingback: Tensor Fasciae Latae (TFL) | Brent Brookbush

  34. Pingback: Upper Body Dysfunction (UBD) | Brent Brookbush

  35. Pingback: Leg Strength Progression | Brent Brookbush

  36. Pingback: Deep Rotators of the Hip | Brent Brookbush

  37. Pingback: Iliacus | Brent Brookbush

  38. Pingback: Quadriceps – Vastus Muscles | Brent Brookbush

  39. Hi, studying for my NASM for a 6 months.. Had my own bootcamp already. However, I find the NASM test hard to digest especially Chapter 6 and 7
    Thank you for anything you could do to help me? I am looking over all your videos underactive overactive strengthening stretching progression regression flexible continumm synergistic dom. recpirical inhibition and more?? Thank you in advance..
    studied the 100 nasm pretest and got 80% and studied 495 test questions…

    • Sounds like you are on the right track Megan J,
      I would say is your next step is to start an NASM routine of your own, and try to integrate some of the ideas in your bootcamp. Application will help all of this stick.
      B2

  40. Pingback: Sartorius | Brent Brookbush

  41. Pingback: Articularis genu | Brent Brookbush

  42. Pingback: Gastrocnemius and Plantaris | Brent Brookbush

  43. Pingback: Introduction to Activation Exercise | Brent Brookbush

  44. Pingback: Gluteus Maximus | Brent Brookbush

  45. Pingback: Introduction to Flexibility Techniques | Brent Brookbush

  46. Pingback: Gluteus Maximus: Superficial & Deep Fibers | Brent Brookbush

  47. Pingback: Popliteus | Brent Brookbush

  48. Pingback: Which exercises target the gluteal muscles while minimizing activation of the TFL? | Brent Brookbush

  49. Pingback: Extensor Hallucis Longus and Extensor Digitorum Longus (& Fibularis Tertius) | Brent Brookbush

  50. Pingback: Research Review: Increased Valgus during Landing Predicts ACL Injury in Adolescent Female Athletes | Brent Brookbush

  51. Pingback: Abdominal Bracing Provides Greater Lumbar Stability Than Hollowing | Brent Brookbush

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>